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NONLINEAR CONTROL OF A BATCH CRYSTALLIZER

J. R. CORRIOU

LSG — CNRS — ENSIC,
Nancy, France

S. ROHANI

Department of Chemical and Biochemical Engineering,
The University of Western Ontario,
London, Ontario, Canada

A nonlinear geometric feedback controller with and without state estimation
(the extended continuous-discrete Kalman filter) is developed and applied to a
0.027 m® potash alum batch crystallizer. The manipulated variable is the temp-
erature of the inlet cooling water supplied to the jacket of the crystallizer, and
the controlled variable is the supersaturation. It is shown that the controller
eliminates the large initial peak in the supersaturation (which results in excessive
nucleation) and maintains the supersaturation at its set-point, provided that
the manipulated variable does not reach its constraints. The controller performs
well with only two measured states (the crystallizer temperature and the
solute concentration) and results in larger terminal crystal mean size in com-
parison with natural cooling and linear cooling policies with fines dissolution.

Keywords: Nonlinear geometric control; Extended Kalman filter; Batch
cooling crystallization; Potash alum

INTRODUCTION

Batch crystallization is an important separation and processing unit op-
eration in chemical and pharmaceutical industries. In the operation of
batch crystallizers the purity, size distribution, and shape of the final
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1416 J. R. CORRIOU AND S. ROHANI

product must be controlled, despite an inherently time-varying super-
saturation level. In the past, many researchers have addressed this control
problem for cooling batch crystallizers in particular. These numerous
studies can be divided into two main categories: programmed or optimal
cooling policies and control based on fines dissolution. It is well known that
significant improvement in product quality may be realized by forcing the
crystallizer to follow a programmed or an optimal cooling policy in com-
parison to natural or linear cooling. In the first category of studies, among
many others, is the work of Jones and Mullin (1974), Mayrhofer and Nyvlt
(1988), Miller and Rawlings (1994), and Sheik and Jones (1997). The
programmed or optimal cooling policy, although effective theoretically, is
essentially an open-loop control policy and therefore incapable of re-
sponding to variations in feed composition from batch to batch and other
external disturbances. The second category of study deals with fines dis-
solution. Jones and Chianese (1987) used a constant rate of fines dissolution
during the entire batch operation. Rohani et al. (1990), however, applied a
feedback controller in conjunction with a fines suspension density meter to
dissolve the excess nuclei during the operation of a batch crystallizer. Later
on, Rohani and Bourne (1990) used an adaptive controller to demonstrate
the efficacy of the feedback control of fines suspension density.

In the present work, we will develop a nonlinear feedback controller
to maintain the driving force of the crystallization, namely the super-
saturation. We will demonstrate that the proposed controller in con-
junction with the extended Kalman filter is capable of maintaining the
supersaturation by measuring only two state variables, namely the crys-
tallizer temperature and the solute concentration.

THE CRYSTALLIZER MODEL

Figure 1 shows the schematics of a batch crystallizer with its cooling
jacket. The crystal population density in the absence of aggregation and
breakage and for size-independent growth rate is

on(L, 1) on(L,t)

T+ G T =0, (1)

with n(L,0)=n, representing the initial population density and
n(0,1) = B(1)/G(r) representing the population density of zero size nuclei.
The kth moment of the population density can be obtained from
Equation (1):

dmk(l)

= 0% B(1) + kG(t)my_i (1), 2)

with m;(0) = my.
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Figure 1. Schematics of the cooling batch crystallizer with the cooling jacket.

The solute mass balance is

de(e) - dm(n)

dt c d[ I (3)

with C(0)=C, as the initial concentration of the solute. The energy
balance on the crystallizer content is

d];(tt) = Q(l), (4)

where A(?) is the total enthalpy content of the crystallizer,
h(t) = WIT() — Trg {[1+ C0)e + my(D)p ey} (5)
and ¢(¢) is the rate of heat removal from the crystallizer,
4(1) = UA[T(1) = Ty(1))]. (6)

Substitution of Equations (3), (5), and (6) in Equation (4) and simplifying
the resulting equation results in

dT(t)  [UA[T(1) — Ty(1)] AH  dm;(t)
dt { W — Pk e = o 7 }/

{Cﬁ[l + C(Z)} + Cpe pckvm3(t)};

with 7(0) = T, as the crystallizer temperature at =0.
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The energy balance on the cooling jacket is:

) _ % [T3(0) = Tyol0)] + % [7(1) = T(1)], ®

where T, = T;at high Coohng water flow rates or 7, =2T; — T, atlow
flow rates and T(0) = Tj.

The saturation concentration of the solute is usually given as a
function of the temperature:

C'()=co+aT+aTl, 9)

and the nucleation and growth rates are expressed in terms of the
supersaturation AC=C — C*:

() = bkpoms () AC(] - exp | . (10)
G(1) = ag|[AC(1)]" exp {— Rl;?t)} . (11)

The physical constants are listed in Table 1.

NONLINEAR GEOMETRICAL CONTROL

Some books in the literature are partially or totally dedicated to non-
linear geometrical control. Among them, Isidori (1995), Nijmeijer and

Table I Operating Conditions and Physical Constants Used in the
Model (Akoglu et al., 1984)

c* =4.1636 — 0.031T + 5.85*10°T?

B = LI5%10% k, p, m3 (AC)*!' exp[— 1] L
G = 39.94 (AC)"* exp[— 2210 '
Cpe = 840

Cow = 3800

F. =103

ky =1

UA = 800

v, = 0.015

W =27

AH = —4220

e = 1760

s =—621.32 4+ 55T

P = 1000
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van der Schaft (1990), Slotine and Li (1991), Khalil (1996), and Levine
(1996) must be cited.

Consider a SISO (Single Input/Single Output) system affine with
respect to input u of the form

% = f(x(1)) + g(x(0))u
{y — h(x(r)) : (12)

where x € R" is the state vector, u € R the input vector, and y € R
the output vector. f(x) and g(x) are vectors of functions. Note that
most systems in chemical engineering belong to this class of affine
systems.

Most of the following definitions or properties will be given locally in
the neighborhood of a point x,.

The relative order of the nonlinear system given by Equation (12) is
defined (Hirschorn, 1979) as the smallest integer r such that

Lo L™ h(x) # 0, (13)

where L, h(x) represents the Lie derivative of £, given the field vector f:

O ), (14)

th(x) = — /i
= Oxi

The r first derivatives of the output of the system in Equation (12) are

y Lyh(x)
o= ) (15)
p(r=1) L h(x)
y) Lih(x) + L Ly h(x)u

Another important property is that the set of r fields of scalars
h(x), Lh(x),..., Lf"[h(x) are linearly independent (Isidori, 1995) and
that consequently r<n where n is the order of the system given in
Equation (12).

Normal Form of Byrnes-Isidori

Consider the nonlinear system given in Equation (12) of relative order
r <n with the change of coordinates z=® (x) whose r first components
are:
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7] ¢1(x) h(?))
z $a(x Lyh(x
2| W R (16)
2) \o0/) \1'h)
If r is smaller than n, it is often possible to find (n — r) functions
¢ + 1 (xX),..., ¢,(x) such that the vector
h(x)
Lyh(x)
D(x) = L]’flh(x) (17)
¢r+l(x)
b, (x)
has a Jacobian matrix that is nonsingular. In particular, the (n — r)
functions ¢, 1(x), ..., ¢,(x) are chosen such that
Lip(x)=0 Vr+1<i<n. (18)

If the transformed variables z = ®(x) and their inverse x=®"" (2),
defined for all x€ R"” and z € R", are smooth mappings, they are global
diffeomorphisms. If they can only be defined in the neighborhood of a
point x, and zg, they are local diffeomorphisms.

The normal form of Byrnes-Isidori is obtained:

21 = )

Z.,~71 - Zy

= b(E)+a(u, (19)
Zr = Foyy (Z)

Z, = F,(2)

together with the output equation

Yy =1z, (20)

where  a(z) = L, L7 'h[®7'(2)],b(z) = Ljh[@7'(2)],  and  Fi(z) =
Li; (@'(2)) Vr+ 1 <i<n. ‘
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Exact Input-State Feedback Linearization

The nonlinear system given in Equation (12) can, in some cases, be
transformed into a linear controllable system (the canonical form of
Brunovsky) after an appropriate change of coordinates: z = ®(x) and a
state feedback law.

Input-State Feedback Linearization when r=n. First, consider the non-
linear system given by Equation (12) with relative order r equal to the
number of states 7.

The diffeomorphism given by Equation (16) is applied to this system.
It results in the normal form of Byrnes-Isidori given by Equation (19),
except that the last (n — r) components have disappeared. Setting the
external input v = z,, the following state feedback control law is ob-
tained:

u:vfb(z)
a(z) -

where a(z) is nonzero by definition of the relative order. This transforms
the normal form of Byrnes-Isidori into the canonical form of Brunovsky:

(21)

le = I
22 = Zz3
: (22)
Z.nfl = Iy
Zn = v
Y=

Thus the nonlinear system of Equation (12) of relative order r =n has
been transformed into a linear and controllable closed loop system via a
local diffeomorphism and the static state feedback reformulated as

v— L}h(x)
P (23)
L Ly "h(x)

Input-State Feedback Linearization when r < n. In many cases, the system
of Equation (12) has a relative order lower than the state dimension
(r<n). Then, the problem of exact linearization in the state space is
solvable if and only if there exists a function y(x) such that the system

X = f{x) + g(x)u
{ﬂ?@) 24)
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has a relative order equal to n and

{ LgL}y(x) =0 for0<i<m-—2 (25)
0 .

LgL?‘ly(x)

Note that Equation (25) is equivalent to the following set of
equations:

Lgy(x) =0
Lad}.g?(x) =0
o (26)
Lad;?’zgy(x) =0
Lad/'”]g‘y(x) 7£ 0
where
19) 0
adig(x) = [115) = S f(x) — ogl) and
ad}g(x) = [f, aa"ng} (x) fori>1 (27)

Equation (26) is a consequence of the Frobenius theorem. The new
output function y(x) exists if and only if the following conditions are
satisfied:

(1) the fields of vectors
g(x), ad}-g(x), ey ad}”lg(x)
are linearly independent, i.e., the matrix [g(x)ad}g(x), ..., ad! ' g(x)]
has rank n, and ' ‘

(i1) the set of fields of vectors

g(x),adjg(x), ..., ad;*g(x)
is involutive.

Finding the new ‘“output” implies solving the system of partial
derivatives equations given by Equation (26). For the exact state-space
linearization, a change of coordinates and a state feedback law are
necessary. The change of coordinates is given by

7(x)
Lyy(x) 28)

Ly 'y(x)
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and the resulting state feedback law is

v— Lly(x
e )
LgLy 7(x)

The system with the new ‘“‘output” y(x) is thus a linear and con-
trollable one, but the “output” y(x) is nonlinear. A complete linearization
of the original system would involve a linearization of the output

mapping.

Control Law for Input-Output Feedback Linearization

Assume that the system of Equation (12) has a relative order r<n
(defined and constant in the region of interest). Consider the linear and
nonlinear parts of the normal form of Equation (19) as, respectively,

6:(y?)}a"'vy(r))T:(Zlv"'7zl‘)T and n:(zf‘+la"'7zn)Ta (30)

so that the normal form can be written as

21 = Vi)

Zr_q : Zy . (31)
z = b(&n)+a(é nu

noo= F(&n)

Setting v = z,, the control law is chosen as

_U—b(«f,i/l)_ U_L}h

= = 32
aen) LR Y
which yields the following closed loop system:
E = A¢+ B
oA (33)
n=F&n),

where 4 and B are constant matrices. The r first equations of Equation
(31) correspond to a linear controllable and observable subsystem that
gives to the closed loop system a linear input-output behavior

»0 (34)
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The (n —r) last equations of Equation (31) correspond to un-
observable states; they represent a realization of minimum order of the
inverse of the system of Equation (12) and pose a stability problem.
Considering that the origin is the equilibrium point, if the output y and its
successive derivatives are null, the zero dynamics are defined by the so-
lution of

n(1) = F(0,n(1)), (35)

which aims to maintain £(t) =0, which is supposed to be the stationary
point of Equation (12). The control law is then

u =

— (0, (1)
a0, n(1)) (36)

The nonlinear system of Equation (12) is minimum phase if the zero
dynamics are asymptotically stable around a stationary operating point.
This can be extended to a reference trajectory yr by subsequent mod-
ification of vector . In that case, the error e(t)=y(t) — yg(t) must
satisfy the following equation:

t
4W0+W4W”W%w~+méW0+wdﬂ+g/eﬁzo, (37)
0
where o,_1,...,a, p are chosen such that the polynomial
ST b o, 18 4+ 4 ous” +ops + p (38)
is Hurwitz. Since e=y — yg, eP=y" — 3D and =
Y — P =p — yp", Equation (37) can be solved with respect to v to

deduce the control law:

t
u:yQ—%4w4Wy~~—mAWo—%40—g/eﬁ. (39)
0

Then the error vector converges exponentially towards zero.

APPLICATION OF THE NONLINEAR CONTROLTO A BATCH
CRYSTALLIZER

The nonlinear control discussed above was applied to a batch cooling
potash alum crystallizer (Rohani et al., 1990). The crystallizer was a
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jacketed vessel charged with a potash alum solution (saturated at 313 K)
containing 27 kg of solvent (water). The operating conditions are given in
Table 1.

The cooling water inlet temperature to the jacket 77, was selected as
the manipulated variable, u, and the supersaturation AC as the controlled
variable, y. The manipulated variable is allowed to vary between
263.15K and 353.15 K and is constrained between these two values. Eight
state variables were defined: the solute concentration, C, the first five
leading moments of the population density, m, to my, the crystallizer and
the jacket temperature, T and 7.

Equations (2), (3), (7), and (8) using Equations (9) to (12) may be
written in state space form

. > E
X1 = 3p kya, (xl —Cy — C1X7 — czx7) exp( G )X4

. by E, 1+x
X = bokypexs(x) — ¢o — ¢1x7 — C2x7) exp( RQ) PR

X3 =a,(x1 — ¢, — c1x7 — 02x3)" ( )
01
X4 =2a,(x1 — ¢o — c1x7 — 2x3) " e p(RW)
X5 = 3a0(x1 —Cp — C1X7 — czx7) p(RW)
4 1
x6 = a(,(xl — Cop — C1X7 — sz7) Xp R‘C7 X5

. | B
X7 = W[cp,u-(]-q—xl)+p{‘kvcwx5] [UA(Xg x7)

u
x —3Wp.kyAHa, (x1 — ¢, — c1x7 — €2x3)" "exp (Rwﬂ X4

o — Fw U4 _

X3 = v, (Ll XS) +p V/cp.. (X7 XS)

y=X1 —C —C1X7 —sz7

(40)

Note that the system of Equation (40) is affine with respect to the
manipulated variable u and thus can be written as in Equation (12). The
vectors fand g can easily be deduced from Equation (40).

In order to determine the relative order, we find that L.i(x)=0 and

OLsh(x)

Lgth(x) = 8)(8 88

UA

=(—C — 262)(77
( ) W1+ x1)cpu + pokoxscy,

}gwéo

Thus the relative order r of the system is in general equal to 2.
However, there exists a singularity when the first factor of the previous
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expression becomes equal to 0 for x, =264.96 K. When the crystallizer
temperature falls below this value, in fact the minimum inlet cooling
temperature is already imposed and the valve is completely closed; thus it
remains in this position.

The application of input-state feedback linearization remains
extremely difficult to realize in the cases where the number of state
equations »n is greater than 2. Thus for our case, input-output lineariza-
tion is applied. The control law that ensures a linear input-output be-
havior is defined as

o= (L2h(x) = 35) = 01 (L) =) = 0o(h(x) = y)
Lgth(x) ,

u =

(41)

where yy is the reference trajectory and v is the external input given by a
PI controller. 0; are parameters defined by the user so that the resulting
closed-loop behavior presents adequate properties of robustness and
performance. In addition to L,L/(x), the Lie derivatives of interest are

OLsh

Lih(x) = fi + (—dy = 2dsx7)fr Ljh(x) = e

i=1,4578

Two cases are studied: first it is assumed that all states (x; to xg) are
known, and in the second case it is assumed that only the crystallizer
temperature and the solute concentration are measured and the other
states are estimated.

Control with All States Known

It is assumed that initially seed crystals of the same size Lg= 100 pm with
a total mass m=10">kg are present. The initial values of all moments
are:

_ m
pko L3V’ @)
mj, =m;_ 1Ly V1 <i<4

Mmoo

The set-point is chosen as 0.015kg/kg solvent. In order to avoid
large transients of the manipulated variable, the set-point is filtered by a
second-order continuous transfer function with a damping coefficient 1.2
and a time constant 50s, thus resulting in the reference trajectory. The
tuning parameters of the control law are taken as 6,=0.001, 6; =0.1, and
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the external input is the output of a PI controller with proportional gain
0.0002 and an integral time constant 10 s, while the input of the controller
is the error between the reference trajectory and the output. The initial
crystallizer temperature is 313 K.

Figure 2 shows the profiles of the inlet jacket temperature, the jacket
temperature, and the crystallizer temperature. Note that the crystallizer
temperature initially increases in order to decrease the supersaturation
peak (see Figure 3). Supersaturation is brought to its set-point and is well
controlled up to time 2600s. At this time, the inlet jacket temperature
reaches its lower constraint (263 K, see Figure 2), which means that the
maximum cooling is imposed to the crystallizer and supersaturation
control is lost. Despite the loss of control after 2600 s, the final crystal
mean size (ms/my4) shown in Figure 4 reaches 780 pm, which is larger than
as reported by Rohani et al. (1990): 529 um and 640 um for natural
cooling and linear cooling with fines dissolution, respectively. Figure 5
shows the product yield, which assumes a sigmoidal shape: at the be-
ginning, the yield is very low; after about 1500s, it increases very rapidly,
and then at a slower rate after 2600 s.

The simulation results presented in Figures 2 to 5 were obtained
assuming that all the states are perfectly known. This assumption,
however, calls for a precise particle size analyzer to determine the first five
leading moments of the population density, which is a formidable task.
Therefore, in the next section we will use an extended Kalman filter,

330 T T T
Crystallizer temperature
Jacket temperature --------

320 ,, . Inlet jacket temperature --------- =

310
) N
o 300 g
E “-‘ LN
é‘ 290 3
& N

. \\
280 SN
"N\ ‘\
. \\‘
270 Dy
s, M i
260
0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

Figure 2. The supersaturation and its set-point using the nonlinear controller with complete
knowledge of state variables.
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0.035
0.03
0.025 \
0.02 \
0.015
0.01 \
0.005 \

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

T T
Supersaturation
Set-point -------=

Supersaturation (kg/kg solvent)

Figure 3. The crystallizer, jacket, and inlet cooling water temperatures using the nonlinear
controller with complete knowledge of state variables.

0.0008

0.0007
0.0006

0.0005 /
0.0004

0.0003 /
0.0002 /

0.0001
0

Mean size (m)

500 1000 1500 2000 2500 3000 3500 4000
Time (s)

Figure 4. The terminal crystal mean-size using the nonlinear controller with complete
knowledge of state variables.
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25

0.5

1
[ 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

Figure 5. The product yield using the nonlinear controller with complete knowledge of state
variables.

which estimates the state variables based on the measurement of crys-
tallizer temperature and the solute concentration. The latter state variable
can be measured using an on-line density meter (Redman and Rohani,
1994) or a temperature float (Wang et al., 1989). Solute concentration can
also be inferred from measurements of other solution properties such as
conductivity, viscosity, and refractive index.

Control with State Estimation

Two states are assumed to be measured: crystallizer temperature 7" and
solute concentration C. In order to estimate all the states, an extended
Kalman filter (Watanabe, 1992) was used. This is the nonlinear extension
of the classical linear Kalman filter. As the model is continuous and the
measurements are discrete, a Kalman filter in its continuous-discrete
form is employed to estimate the states.

The system is now described by

x = flx,u, 1) + w(t)
{yk = h(x(t), k) + vr’ (43)
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where w and v, are zero-mean white noises of respective covariance
matrices Q and R. The extended Kalman filter in its continuous-discrete
form is defined in two stages, first a continuous prediction stage for states
and covariance matrix, then a discrete correction stage based on mea-
surements where the Kalman gain is calculated and the states are updated
based on the tangent linear model.

Prediction
state variables

L (44)

covariance estimate

p-
% =FP  +P F' 40 (45)
Correction

Kalman gain

1

Ki = PLH! [H P HE + Ry~ (46)
state variables
X5 = %0+ Ke[ye — h(x7)] (47)
with

of _on

In the control law given by Equation (41), the states were replaced by
their estimates. The set-point was chosen equal to 0.015kg/kg solvent
and filtered by a second-order continuous filter, as explained above. The
tuning parameters of the control law in Equation (41) as well as the
parameters of the PI controller are also the same as above.

The covariance matrix P was taken as diagonal with elements
P(i,i) = X2/20 and covariance matrix Q was equal to 0.0011, where I is
the identity matrix of convenient dimension. The temperature and solute
concentration were both assumed to be affected by Gaussian noises of
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360
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Figure 6. The supersaturation and its set-point using the nonlinear controller and the
extended Kalman filter.
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Figure 7. The crystallizer, jacket, and inlet cooling water temperatures using the nonlinear
controller and the extended Kalman filter.
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0.0005
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Figure 8. The terminal crystal mean-size using the nonlinear controller and the extended
Kalman filter.
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Figure 9. The crystallizer temperature and its estimate using the extended Kalman filter.
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Figure 10. The solute concentration and its estimate using the extended Kalman filter.

standard deviations 0.2 and 0.002, respectively. The matrix R was diag-
onal with elements equal to R(i, i) = o;°. Three states were estimated: the
solute concentration C, the crystallizer temperature T, and the jacket
temperature 7;. The other states, moments x, to xs, were predicted from
the model.

The general behavior of the crystallizer under the nonlinear feedback
control was similar to what was observed when all the states were as-
sumed to be perfectly known. The supersaturation (Figure 7) follows its
set-point up to around 2500s when the manipulated variable (Figure 6)
saturates at its lower constraint. The crystal mean size remains almost
unchanged (see Figure 8) compared to above with all states known.
Figures 9 and 10 demonstrate the estimated and the measured crystallizer
temperature and the solute concentration, respectively. It is clear that the
Kalman filter is capable of estimating the state variables very well.

The results presented in this section demonstrate that the nonlinear
controller works well even in the absence of perfect knowledge of the
state variables.

CONCLUSIONS

A nonlinear geometric feedback controller was presented and applied for
the control of a batch cooling crystallizer. Two cases were considered:
first, it was assumed that all the state variables were perfectly known;
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second, it was assumed that only two state variables, namely the crys-
tallizer temperature and the solute concentration, were known. In both
cases, the controller was capable of quickly bringing the supersaturation
to its set-point and thereby eliminating the large peak in the super-
saturation at the beginning of batch time. The terminal crystal mean size
achieved in both cases was larger than what is reported in the literature.
The nonlinear feedback control of a batch crystallizer coupled with a
state-estimator based on the measurement of a limited number of easily
observable state variables has advantages over more commonly practiced
open-loop optimal control policies. The feedback control is capable of
ensuring the desirable product mean size in the presence of external
disturbances such as variations in feed quality, impurities, and mixing
effects. Therefore, it is envisaged that the proposed controller with the
state estimator will find applications in industry.

NOMENCLATURE

A heat transfer area, m”; constant matrix in Equation (33)

ap, aj constants in Equation (11)

a(z) defined in Equation (19)

B nucleation rate at zero size, no/kg solvent’s; constant matrix in Equation (33)
by, by constants in Equation (10)

solute concentration, kg/kg solvent

,c1,¢o  constants in Equation (9)

specific heat, J/kg.K

activation energy, J/mol

error signal given by Equation (38)

flow rate, m’/s, gradient vector in Equation (49), function in Equation (19)
function in Equation (12)

growth rate, m/s

function in Equation (12)

gradient vector in Equation (49)

total enthalpy content, J; function in Equation (12)

Kalman gain in Equation (47)

volumetric shape factor of crystals

crystal size, m; Lie derivative given in Equation (14)

size of seed crystals, m

kth moment of population density function; m*/kg solvent

crystal population density function, no./kg solvent.m; number of state variables
covariance matrix of the Kalman filter given in Equation (46)

covariance matrix of wy in Equation (44)

cooling rate, W

universal gas constant, 8.314 J/mol.K; covariance matrix of vy in Equation (44)
relative order; constants in solution density given in Table I

Laplace operator, 1/s

temperature, K

1 time, s

U overall heat transfer coefficient, W/m?.K

u vector of manipulated variables

.ﬂu‘—sx»&@wzsr.h@a}m% AT S S A
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V volume, m®

v external input given in Equation (26), white measurement noise in Equation (44)
w mass of solvent, kg

w white process noise in Equation (44)

X state vector

v output vector

z transformed variables defined by Equation (16)
Greek Letters

o constants in Equation (38)

AC supersaturation, kg/kg solvent

AH heat of crystallization, J/kg crystals

¢ auxiliary variables defined in Equation (17)
y function defined in Equation (29)

14 defined in Equation (35)

n defined in Equation (36)

p density, kg/m?; constant in Equation (38)
Subscripts

B nucleation

C crystals

G growth

i inlet

J jacket

k kth moment, sampling instant in Equation (44)
0 outlet

R controller set-point

ref reference temperature

K solution

w water

0 initial condition

Superscripts

* saturation condition

~ estimate
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