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NONLINEARCONTROLOFABATCHCRYSTALLIZER

J. R. CORRIOU

LSG�CNRS�ENSIC,
Nancy, France

S. ROHANI

Department of Chemical and Biochemical Engineering,
The University of Western Ontario,
London, Ontario, Canada

A nonlinear geometric feedback controller with and without state estimation

(the extended continuous-discrete Kalman filter) is developed and applied to a

0.027m3 potash alum batch crystallizer. The manipulated variable is the temp-

erature of the inlet cooling water supplied to the jacket of the crystallizer, and

the controlled variable is the supersaturation. It is shown that the controller

eliminates the large initial peak in the supersaturation (which results in excessive

nucleation) and maintains the supersaturation at its set-point, provided that

themanipulated variable does not reach its constraints. The controller performs

well with only two measured states (the crystallizer temperature and the

solute concentration) and results in larger terminal crystal mean size in com-

parison with natural cooling and linear cooling policies with fines dissolution.

Keywords: Nonlinear geometric control; Extended Kalman filter; Batch

cooling crystallization; Potash alum

INTRODUCTION

Batch crystallization is an important separation and processing unit op-
eration in chemical and pharmaceutical industries. In the operation of
batch crystallizers the purity, size distribution, and shape of the final
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product must be controlled, despite an inherently time-varying super-
saturation level. In the past, many researchers have addressed this control
problem for cooling batch crystallizers in particular. These numerous
studies can be divided into two main categories: programmed or optimal
cooling policies and control based on fines dissolution. It is well known that
significant improvement in product quality may be realized by forcing the
crystallizer to follow a programmed or an optimal cooling policy in com-
parison to natural or linear cooling. In the first category of studies, among
many others, is the work of Jones andMullin (1974),Mayrhofer andNyvlt
(1988), Miller and Rawlings (1994), and Sheik and Jones (1997). The
programmed or optimal cooling policy, although effective theoretically, is
essentially an open-loop control policy and therefore incapable of re-
sponding to variations in feed composition from batch to batch and other
external disturbances. The second category of study deals with fines dis-
solution. Jones andChianese (1987) used a constant rate of fines dissolution
during the entire batch operation. Rohani et al. (1990), however, applied a
feedback controller in conjunction with a fines suspension density meter to
dissolve the excess nuclei during the operation of a batch crystallizer. Later
on, Rohani and Bourne (1990) used an adaptive controller to demonstrate
the efficacy of the feedback control of fines suspension density.

In the present work, we will develop a nonlinear feedback controller
to maintain the driving force of the crystallization, namely the super-
saturation. We will demonstrate that the proposed controller in con-
junction with the extended Kalman filter is capable of maintaining the
supersaturation by measuring only two state variables, namely the crys-
tallizer temperature and the solute concentration.

THECRYSTALLIZERMODEL

Figure 1 shows the schematics of a batch crystallizer with its cooling
jacket. The crystal population density in the absence of aggregation and
breakage and for size-independent growth rate is

@n L; tð Þ
@t

þ G tð Þ @n L; tð Þ
@L

¼ 0; ð1Þ

with n(L,0)¼ n0 representing the initial population density and
nð0; tÞ ¼ BðtÞ=GðtÞ representing the population density of zero size nuclei.
The kth moment of the population density can be obtained from
Equation (1):

dmk tð Þ
dt

¼ 0kB tð Þ þ kG tð Þmk�1 tð Þ; ð2Þ

with mk(0)¼mk0.
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The solute mass balance is

dC tð Þ
dt

¼ �rckv
dm3 tð Þ
dt

; ð3Þ

with C(0)¼C0 as the initial concentration of the solute. The energy
balance on the crystallizer content is

dh tð Þ
dt

¼ _qq tð Þ; ð4Þ

where h(t) is the total enthalpy content of the crystallizer,

hðtÞ ¼ W TðtÞ � Tref

� �
1þ CðtÞ½ �cp þm3ðtÞrckvcp;c

� �
; ð5Þ

and q_(t) is the rate of heat removal from the crystallizer,

_qq tð Þ ¼ UA T tð Þ � Tj tð Þ
� �

: ð6Þ

Substitution of Equations (3), (5), and (6) in Equation (4) and simplifying
the resulting equation results in

dT tð Þ
dt

¼
UA T tð Þ � Tj tð Þ

� �
W

� rckv
DH

C tð Þ � C�½ �
dm3 tð Þ
dt

� ��
cp 1þ C tð Þ½ � þ cp;c rckvm3 tð Þ

� �
;

ð7Þ

with T(0)¼T0 as the crystallizer temperature at t¼ 0.

Figure 1. Schematics of the cooling batch crystallizer with the cooling jacket.
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The energy balance on the cooling jacket is:

dTj tð Þ
dt

¼ Fw

Vj
Tj;i tð Þ � Tj;o tð Þ
� �

þ UA

rwVjcp;w
T tð Þ � Tj tð Þ
� �

; ð8Þ

where Tj,o¼Tj at high cooling water flow rates or Tj,o¼ 2Tj 7 Tj,i at low
flow rates and Tj(0)¼Tj0.

The saturation concentration of the solute is usually given as a
function of the temperature:

C�ðtÞ ¼ c0 þ c1Tþ c2T
2; ð9Þ

and the nucleation and growth rates are expressed in terms of the
supersaturation DC¼C 7 C*:

B tð Þ ¼ bokvrcm3 tð Þ DC tð Þ½ �b1 1þ C tð Þ
rs

exp � EB

RT tð Þ

� 	
; ð10Þ

G tð Þ ¼ a0 DC tð Þ½ �a1 exp � EG

RT tð Þ

� 	
: ð11Þ

The physical constants are listed in Table I.

NONLINEARGEOMETRICALCONTROL

Some books in the literature are partially or totally dedicated to non-
linear geometrical control. Among them, Isidori (1995), Nijmeijer and

Table I Operating Conditions and Physical Constants Used in the

Model (Akoglu et al., 1984)

c* ¼ 4:1636� 0:031Tþ 5:85�10�5T2

B ¼ 1.15*1028 kv rc m3 (DC)
2.1 exp½� 105

RT� 1þC
rs

G ¼ 39.94 (DC)1.38 exp½� 3:2x104

RT �
cpc ¼ 840

cpw ¼ 3800

Fw ¼ 1073

kv ¼ 1

UA ¼ 800

Vj ¼ 0.015

W ¼ 27

DH ¼74220

rc ¼ 1760

rs ¼7621.32 þ 5.5 T

rw ¼ 1000
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van der Schaft (1990), Slotine and Li (1991), Khalil (1996), and Levine
(1996) must be cited.

Consider a SISO (Single Input=Single Output) system affine with
respect to input u of the form

_xx ¼ f x tð Þð Þ þ g x tð Þð Þu
y ¼ h x tð Þð Þ

�
; ð12Þ

where x 2 Rn is the state vector, u 2 R the input vector, and y 2 R
the output vector. f(x) and g(x) are vectors of functions. Note that
most systems in chemical engineering belong to this class of affine
systems.

Most of the following definitions or properties will be given locally in
the neighborhood of a point x0.

The relative order of the nonlinear system given by Equation (12) is
defined (Hirschorn, 1979) as the smallest integer r such that

LgL
r�1
f h xð Þ 6¼ 0; ð13Þ

where Lf h(x) represents the Lie derivative of h, given the field vector f:

Lf h xð Þ ¼
Xn
i¼1

@h

@xi
fi xð Þ: ð14Þ

The r first derivatives of the output of the system in Equation (12) are

_yy

..

.

y r�1ð Þ

y rð Þ

0
BBB@

1
CCCA ¼

Lfh xð Þ
..
.

Lr�1
f h xð Þ

Lr
fh xð Þ þ LgL

r�1
f h xð Þu

0
BBB@

1
CCCA: ð15Þ

Another important property is that the set of r fields of scalars
h(x), Lfh(x), . . . , Lf

r-1h(x) are linearly independent (Isidori, 1995) and
that consequently r� n where n is the order of the system given in
Equation (12).

Normal Form of Byrnes-Isidori

Consider the nonlinear system given in Equation (12) of relative order
r� n with the change of coordinates z¼F (x) whose r first components
are:

NONLINEAR CONTROL OF A BATCH CRYSTALLIZER 1419



z1
z2
..
.

zr

0
BBB@

1
CCCA ¼

f1 xð Þ
f2 xð Þ

..

.

fr xð Þ

0
BBB@

1
CCCA ¼

h xð Þ
Lfh xð Þ

..

.

Lr�1
f h xð Þ

0
BBB@

1
CCCA: ð16Þ

If r is smaller than n, it is often possible to find (n7 r) functions
fr þ 1 (x) , . . . , fn(x) such that the vector

F xð Þ ¼

h xð Þ
Lfh xð Þ

..

.

Lr�1
f h xð Þ
frþ1 xð Þ

..

.

fn xð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð17Þ

has a Jacobian matrix that is nonsingular. In particular, the (n7 r)
functions frþ 1(x), . . . , fn(x) are chosen such that

Lgfi xð Þ ¼ 0 8 rþ 1 � i � n: ð18Þ

If the transformed variables z¼F(x) and their inverse x¼F71 (z),
defined for all x2Rn and z2Rn, are smooth mappings, they are global
diffeomorphisms. If they can only be defined in the neighborhood of a
point x0 and z0, they are local diffeomorphisms.

The normal form of Byrnes-Isidori is obtained:

_zz1 ¼ z2
..
.

_zzr�1 ¼ zr
_zzr ¼ b zð Þ þ a zð Þu
_zzrþ1 ¼ Frþ1 zð Þ

..

.

_zzn ¼ Fn zð Þ

8>>>>>>>>>><
>>>>>>>>>>:

; ð19Þ

together with the output equation

y ¼ z1; ð20Þ

where a zð Þ ¼ LgL
r�1
f h F�1 zð Þ

� �
; b zð Þ ¼ Lr

fh F�1 zð Þ
� �

, and Fi zð Þ ¼
Lffi F�1 zð Þ

� �
8rþ 1 � i � n.
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Exact Input-State Feedback Linearization

The nonlinear system given in Equation (12) can, in some cases, be
transformed into a linear controllable system (the canonical form of
Brunovsky) after an appropriate change of coordinates: z ¼ F xð Þ and a
state feedback law.

Input-State Feedback Linearization when r¼n. First, consider the non-
linear system given by Equation (12) with relative order r equal to the
number of states n.

The diffeomorphism given by Equation (16) is applied to this system.
It results in the normal form of Byrnes-Isidori given by Equation (19),
except that the last (n7 r) components have disappeared. Setting the
external input v ¼ _zzn, the following state feedback control law is ob-
tained:

u ¼ v� b zð Þ
a zð Þ ; ð21Þ

where a(z) is nonzero by definition of the relative order. This transforms
the normal form of Byrnes-Isidori into the canonical form of Brunovsky:

_zz1 ¼ z2
_zz2 ¼ z3

..

.

_zzn�1 ¼ zn
_zzn ¼ v

8>>>>><
>>>>>:

: ð22Þ

y ¼ z1

Thus the nonlinear system of Equation (12) of relative order r¼ n has
been transformed into a linear and controllable closed loop system via a
local diffeomorphism and the static state feedback reformulated as

u ¼
v� Ln

f h xð Þ
LgL

n�1
f h xð Þ ð23Þ

Input-State Feedback Linearizationwhen r<n. In many cases, the system
of Equation (12) has a relative order lower than the state dimension
(r< n). Then, the problem of exact linearization in the state space is
solvable if and only if there exists a function g(x) such that the system

_xx ¼ f xð Þ þ g xð Þu
y0 ¼ g xð Þ

�
ð24Þ
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has a relative order equal to n and

LgL
i
fg xð Þ ¼ 0 for 0 � i � n� 2

LgL
n�1
f g xð Þ 6¼ 0

(
: ð25Þ

Note that Equation (25) is equivalent to the following set of
equations:

Lgg xð Þ ¼ 0
Lad1

f
gg xð Þ ¼ 0

..

.

Ladn�2
f

gg xð Þ ¼ 0

Ladn�1
f

gg xð Þ 6¼ 0

8>>>>>><
>>>>>>:

; ð26Þ

where

adfg xð Þ ¼ f; g½ � xð Þ ¼ @g

@x
f xð Þ � @f

@x
g xð Þ and

ad i
f g xð Þ ¼ f; ad i�1

f g
h i

xð Þ for i > 1 ð27Þ

Equation (26) is a consequence of the Frobenius theorem. The new
output function g(x) exists if and only if the following conditions are
satisfied:

(i) the fields of vectors

gðxÞ; ad1f g xð Þ; . . . ; adn�1
f g xð Þ

are linearly independent, i.e., the matrix [gðxÞad1f g xð Þ; . . . ; adn�1
f g xð Þ]

has rank n, and
(ii) the set of fields of vectors

gðxÞ; ad1f g xð Þ; . . . ; adn�2
f g xð Þ

is involutive.

Finding the new ‘‘output’’ implies solving the system of partial
derivatives equations given by Equation (26). For the exact state-space
linearization, a change of coordinates and a state feedback law are
necessary. The change of coordinates is given by

F xð Þ ¼

g xð Þ
Lf g xð Þ

..

.

Ln�1
f g xð Þ

0
BBB@

1
CCCA; ð28Þ
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and the resulting state feedback law is

u ¼
v� Ln

f g xð Þ
LgL

n�1
f g xð Þ

: ð29Þ

The system with the new ‘‘output’’ g(x) is thus a linear and con-
trollable one, but the ‘‘output’’ g(x) is nonlinear. A complete linearization
of the original system would involve a linearization of the output
mapping.

Control Law for Input-Output Feedback Linearization

Assume that the system of Equation (12) has a relative order r� n
(defined and constant in the region of interest). Consider the linear and
nonlinear parts of the normal form of Equation (19) as, respectively,

x ¼ ðy; _yy; . . . ; yðrÞÞT ¼ ðz1; . . . ; zrÞT and Z ¼ ðzrþ1; . . . ; znÞT; ð30Þ

so that the normal form can be written as

_zz1 ¼ z2
..
.

_zzr�1 ¼ zr
_zzr ¼ b x; Zð Þ þ a x; Zð Þu
_ZZ ¼ F x; Zð Þ

8>>>>><
>>>>>:

: ð31Þ

Setting v ¼ _zzr, the control law is chosen as

u ¼ v� bðx; ZÞ
aðx; ZÞ ¼

v� Lr
fh

LgL
r�1
f h

; ð32Þ

which yields the following closed loop system:

_xx ¼ Axþ Bv

_ZZ ¼ Fðx; ZÞ;
ð33Þ

where A and B are constant matrices. The r first equations of Equation
(31) correspond to a linear controllable and observable subsystem that
gives to the closed loop system a linear input-output behavior

yðrÞ ¼ v ð34Þ

NONLINEAR CONTROL OF A BATCH CRYSTALLIZER 1423



The (n7 r) last equations of Equation (31) correspond to un-
observable states; they represent a realization of minimum order of the
inverse of the system of Equation (12) and pose a stability problem.
Considering that the origin is the equilibrium point, if the output y and its
successive derivatives are null, the zero dynamics are defined by the so-
lution of

_ZZðtÞ ¼ Fð0; ZðtÞÞ; ð35Þ

which aims to maintain x(t)¼ 0, which is supposed to be the stationary
point of Equation (12). The control law is then

u ¼ �bð0; ZðtÞÞ
að0; ZðtÞÞ : ð36Þ

The nonlinear system of Equation (12) is minimum phase if the zero
dynamics are asymptotically stable around a stationary operating point.
This can be extended to a reference trajectory yR by subsequent mod-
ification of vector x. In that case, the error e(t)¼ y(t) 7 yR(t) must
satisfy the following equation:

e rð Þ tð Þ þ ar�1e
r�1ð Þ tð Þ þ � � � þ a1e 1ð Þ tð Þ þ a0e tð Þ þ r

Z t

0

e dd ¼ 0; ð37Þ

where ar�1; . . . ; a0; r are chosen such that the polynomial

srþ1 þ ar�1s
r þ � � � þ a1s2 þ a0sþ r ð38Þ

is Hurwitz. Since e¼ y 7 yR, e(1)¼ y(1)7 yR
(1), . . . , and e(r)¼

y(r)7 yR
(r)¼ v7 yR

(r), Equation (37) can be solved with respect to v to
deduce the control law:

v ¼ y
rð Þ
R � ar�1e

r�1ð Þ tð Þ � � � � � a1e 1ð Þ tð Þ � a0e tð Þ � r
Z t

0

e dd: ð39Þ

Then the error vector converges exponentially towards zero.

APPLICATIONOF THENONLINEARCONTROLTOABATCH
CRYSTALLIZER

The nonlinear control discussed above was applied to a batch cooling
potash alum crystallizer (Rohani et al., 1990). The crystallizer was a
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jacketed vessel charged with a potash alum solution (saturated at 313K)
containing 27 kg of solvent (water). The operating conditions are given in
Table I.

The cooling water inlet temperature to the jacket Tj,in was selected as
the manipulated variable, u, and the supersaturation DC as the controlled
variable, y. The manipulated variable is allowed to vary between
263.15K and 353.15K and is constrained between these two values. Eight
state variables were defined: the solute concentration, C, the first five
leading moments of the population density, mo to m4, the crystallizer and
the jacket temperature, T and Tj.

Equations (2), (3), (7), and (8) using Equations (9) to (12) may be
written in state space form

_xx1 ¼ 3rckvao x1 � co � c1x7 � c2x
2
7

� �a1 exp � EG

Rx7

� �
x4

_xx2 ¼ bokvrcx5 x1 � co � c1x7 � c2x
2
7

� �b1 exp � EB

Rx7

� �
1þx1

roþr1x7

_xx3 ¼ ao x1 � co � c1x7 � c2x
2
7

� �a1 exp EG

Rx7

� �
x2

_xx4 ¼ 2ao x1 � co � c1x7 � c2x
2
7

� �a1 exp EG

Rx7

� �
x3

_xx5 ¼ 3ao x1 � co � c1x7 � c2x
2
7

� �a1 exp EG

Rx7

� �
x4

_xx6 ¼ 4ao x1 � co � c1x7 � c2x
2
7

� �a1 exp EG

Rx7

� �
x5

_xx7 ¼ 1
W cp;w 1þx1ð Þþrckvcp;cx5½ � UAðx8 � x7Þ½

� � 3WrckvDHao x1 � co � c1x7 � c2x
2
7

� �a1�1
exp EG

Rx7

� �i
x4

_xx8 ¼ Fw

Vj
u� x8ð Þ þ UA

rwVjcp;w
x7 � x8ð Þ

y ¼ x1 � c0 � c1x7 � c2x
2
7

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð40Þ

Note that the system of Equation (40) is affine with respect to the
manipulated variable u and thus can be written as in Equation (12). The
vectors f and g can easily be deduced from Equation (40).

In order to determine the relative order, we find that Lgh(x)¼ 0 and

LgLfh xð Þ ¼ @Lfh xð Þ
@x8

g8

¼ �c1 � 2c2x7ð Þ UA

W 1þ x1ð Þcp;w þ rckvx5cp;c
� � g8 6¼ 0

Thus the relative order r of the system is in general equal to 2.
However, there exists a singularity when the first factor of the previous
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expression becomes equal to 0 for x2¼ 264.96K. When the crystallizer
temperature falls below this value, in fact the minimum inlet cooling
temperature is already imposed and the valve is completely closed; thus it
remains in this position.

The application of input-state feedback linearization remains
extremely difficult to realize in the cases where the number of state
equations n is greater than 2. Thus for our case, input-output lineariza-
tion is applied. The control law that ensures a linear input-output be-
havior is defined as

u ¼
v� ðL2

f h xð Þ � y
2ð Þ
R Þ � y1 LfhðxÞ � y

ð1Þ
R

� �
� y0 h xð Þ � yRð Þ

LgLfh xð Þ ; ð41Þ

where yR is the reference trajectory and v is the external input given by a
PI controller. yi are parameters defined by the user so that the resulting
closed-loop behavior presents adequate properties of robustness and
performance. In addition to LgLfh(x), the Lie derivatives of interest are

Lfh xð Þ ¼ f1 þ �d2 � 2d3x7ð Þf7 L2
f h xð Þ ¼

X
i¼1;4;5;7;8

@Lfh

@xi
fi:

Two cases are studied: first it is assumed that all states (x1 to x8) are
known, and in the second case it is assumed that only the crystallizer
temperature and the solute concentration are measured and the other
states are estimated.

Control with All States Known

It is assumed that initially seed crystals of the same size LS¼ 100 mm with
a total mass m¼ 1073 kg are present. The initial values of all moments
are:

m00 ¼
m

rckvL3
sW

;

mio ¼ mi�1Ls 81 � i � 4:
ð42Þ

The set-point is chosen as 0.015 kg=kg solvent. In order to avoid
large transients of the manipulated variable, the set-point is filtered by a
second-order continuous transfer function with a damping coefficient 1.2
and a time constant 50 s, thus resulting in the reference trajectory. The
tuning parameters of the control law are taken as y0¼ 0.001, y1¼ 0.1, and
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the external input is the output of a PI controller with proportional gain
0.0002 and an integral time constant 10 s, while the input of the controller
is the error between the reference trajectory and the output. The initial
crystallizer temperature is 313K.

Figure 2 shows the profiles of the inlet jacket temperature, the jacket
temperature, and the crystallizer temperature. Note that the crystallizer
temperature initially increases in order to decrease the supersaturation
peak (see Figure 3). Supersaturation is brought to its set-point and is well
controlled up to time 2600 s. At this time, the inlet jacket temperature
reaches its lower constraint (263K, see Figure 2), which means that the
maximum cooling is imposed to the crystallizer and supersaturation
control is lost. Despite the loss of control after 2600 s, the final crystal
mean size (m5=m4) shown in Figure 4 reaches 780 mm, which is larger than
as reported by Rohani et al. (1990): 529 mm and 640 mm for natural
cooling and linear cooling with fines dissolution, respectively. Figure 5
shows the product yield, which assumes a sigmoidal shape: at the be-
ginning, the yield is very low; after about 1500 s, it increases very rapidly,
and then at a slower rate after 2600 s.

The simulation results presented in Figures 2 to 5 were obtained
assuming that all the states are perfectly known. This assumption,
however, calls for a precise particle size analyzer to determine the first five
leading moments of the population density, which is a formidable task.
Therefore, in the next section we will use an extended Kalman filter,

Figure 2. The supersaturation and its set-point using the nonlinear controller with complete

knowledge of state variables.
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Figure 3. The crystallizer, jacket, and inlet cooling water temperatures using the nonlinear

controller with complete knowledge of state variables.

Figure 4. The terminal crystal mean-size using the nonlinear controller with complete

knowledge of state variables.
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which estimates the state variables based on the measurement of crys-
tallizer temperature and the solute concentration. The latter state variable
can be measured using an on-line density meter (Redman and Rohani,
1994) or a temperature float (Wang et al., 1989). Solute concentration can
also be inferred from measurements of other solution properties such as
conductivity, viscosity, and refractive index.

Control with State Estimation

Two states are assumed to be measured: crystallizer temperature T and
solute concentration C. In order to estimate all the states, an extended
Kalman filter (Watanabe, 1992) was used. This is the nonlinear extension
of the classical linear Kalman filter. As the model is continuous and the
measurements are discrete, a Kalman filter in its continuous-discrete
form is employed to estimate the states.

The system is now described by

_xx ¼ f x; u; tð Þ þ w tð Þ
yk ¼ h x tkð Þ; kð Þ þ vk

�
; ð43Þ

Figure 5. The product yield using the nonlinear controller with complete knowledge of state

variables.
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where w and vk are zero-mean white noises of respective covariance
matrices Q and R. The extended Kalman filter in its continuous-discrete
form is defined in two stages, first a continuous prediction stage for states
and covariance matrix, then a discrete correction stage based on mea-
surements where the Kalman gain is calculated and the states are updated
based on the tangent linear model.

Prediction
state variables

dx̂x�
dt

¼ f x̂x�; u; tð Þ ð44Þ

covariance estimate

dP�

dt
¼ FP� þ P�FT þQ ð45Þ

Correction

Kalman gain

Kk ¼ P�
k H

T
k HkP

�1
k HT

k þ Rk

� ��1 ð46Þ

state variables

x̂xþk ¼ x̂x�k þ Kk yk � h x̂x�k
� �� �

ð47Þ

with

F ¼ @f

@x
x̂x�
k
and H ¼ @h

@x

����
����
x̂x�
k

ð48Þ

In the control law given by Equation (41), the states were replaced by
their estimates. The set-point was chosen equal to 0.015 kg=kg solvent
and filtered by a second-order continuous filter, as explained above. The
tuning parameters of the control law in Equation (41) as well as the
parameters of the PI controller are also the same as above.

The covariance matrix P was taken as diagonal with elements
Pði; iÞ ¼ x̂x2i =20 and covariance matrix Q was equal to 0.001I, where I is
the identity matrix of convenient dimension. The temperature and solute
concentration were both assumed to be affected by Gaussian noises of
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Figure 6. The supersaturation and its set-point using the nonlinear controller and the

extended Kalman filter.

Figure 7. The crystallizer, jacket, and inlet cooling water temperatures using the nonlinear

controller and the extended Kalman filter.
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Figure 8. The terminal crystal mean-size using the nonlinear controller and the extended

Kalman filter.

Figure 9. The crystallizer temperature and its estimate using the extended Kalman filter.
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standard deviations 0.2 and 0.002, respectively. The matrix R was diag-
onal with elements equal to R(i, i)¼ si

2. Three states were estimated: the
solute concentration C, the crystallizer temperature T, and the jacket
temperature Tj. The other states, moments x2 to x6, were predicted from
the model.

The general behavior of the crystallizer under the nonlinear feedback
control was similar to what was observed when all the states were as-
sumed to be perfectly known. The supersaturation (Figure 7) follows its
set-point up to around 2500 s when the manipulated variable (Figure 6)
saturates at its lower constraint. The crystal mean size remains almost
unchanged (see Figure 8) compared to above with all states known.
Figures 9 and 10 demonstrate the estimated and the measured crystallizer
temperature and the solute concentration, respectively. It is clear that the
Kalman filter is capable of estimating the state variables very well.

The results presented in this section demonstrate that the nonlinear
controller works well even in the absence of perfect knowledge of the
state variables.

CONCLUSIONS

A nonlinear geometric feedback controller was presented and applied for
the control of a batch cooling crystallizer. Two cases were considered:
first, it was assumed that all the state variables were perfectly known;

Figure 10. The solute concentration and its estimate using the extended Kalman filter.
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second, it was assumed that only two state variables, namely the crys-
tallizer temperature and the solute concentration, were known. In both
cases, the controller was capable of quickly bringing the supersaturation
to its set-point and thereby eliminating the large peak in the super-
saturation at the beginning of batch time. The terminal crystal mean size
achieved in both cases was larger than what is reported in the literature.
The nonlinear feedback control of a batch crystallizer coupled with a
state-estimator based on the measurement of a limited number of easily
observable state variables has advantages over more commonly practiced
open-loop optimal control policies. The feedback control is capable of
ensuring the desirable product mean size in the presence of external
disturbances such as variations in feed quality, impurities, and mixing
effects. Therefore, it is envisaged that the proposed controller with the
state estimator will find applications in industry.

NOMENCLATURE

A heat transfer area, m2; constant matrix in Equation (33)

a0; a1 constants in Equation (11)

aðzÞ defined in Equation (19)

B nucleation rate at zero size, no=kg solvent’s; constant matrix in Equation (33)

b0; b1 constants in Equation (10)

C solute concentration, kg=kg solvent

c0; c1; c2 constants in Equation (9)

cp specific heat, J=kg.K

E activation energy, J=mol

e error signal given by Equation (38)

F flow rate, m3=s, gradient vector in Equation (49), function in Equation (19)

f function in Equation (12)

G growth rate, m=s
g function in Equation (12)

H gradient vector in Equation (49)

h total enthalpy content, J; function in Equation (12)

K Kalman gain in Equation (47)

kv volumetric shape factor of crystals

L crystal size, m; Lie derivative given in Equation (14)

Ls size of seed crystals, m

mk kth moment of population density function; mk=kg solvent

n crystal population density function, no.=kg solvent.m; number of state variables

P covariance matrix of the Kalman filter given in Equation (46)

Q covariance matrix of wk in Equation (44)

_qq cooling rate, W

R universal gas constant, 8.314 J=mol.K; covariance matrix of vk in Equation (44)

r relative order; constants in solution density given in Table I

s Laplace operator, 1=s

T temperature, K

t time, s

U overall heat transfer coefficient, W=m2.K

u vector of manipulated variables
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V volume, m3

v external input given in Equation (26), white measurement noise in Equation (44)

W mass of solvent, kg

w white process noise in Equation (44)

x state vector

y output vector

z transformed variables defined by Equation (16)

Greek Letters
a constants in Equation (38)

DC supersaturation, kg=kg solvent

DH heat of crystallization, J=kg crystals

f auxiliary variables defined in Equation (17)

g function defined in Equation (29)

x defined in Equation (35)

Z defined in Equation (36)

r density, kg=m3; constant in Equation (38)

Subscripts
B nucleation

C crystals

G growth

i inlet

j jacket

k kth moment, sampling instant in Equation (44)

o outlet

R controller set-point

ref reference temperature

s solution

w water

0 initial condition

Superscripts
* saturation condition

^ estimate
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